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Dear Editors,

In the article “Serum Iron Overload Activates the SMAD 
Pathway and Hepcidin Expression of Hepatocytes via 
SMURF1”, Ning Zhang et al. studied the molecular mecha-
nisms linking serum iron overload to hepcidin expression, 
emphasizing the role of SMURF1 as a pivotal regulator of 
the bone morphogenetic proteins (BMP)/SMAD pathway in 
response to holo-transferrin induction.1 This research is sig-
nificant given hepcidin’s crucial role in iron homeostasis and 
the pathophysiology of iron overload disorders, such as he-
reditary hemochromatosis.

The BMP/SMAD pathway is a complex signaling network 
involved in development, tissue homeostasis, and disease 
modulation. Various BMP ligands activate specific receptor-
regulated SMADs, such as SMAD1, 2, 3, 5, and 9. SMAD4 acts 
as a common mediator by forming complexes with receptor-
regulated SMADs that translocate into the nucleus to regulate 
gene expression. Additionally, inhibitory SMADs (SMAD6/7) 
provide feedback control to fine-tune the signaling output.2

BMPs were initially identified in bone extracts due to their 
ability to induce bone and cartilage formation. Subsequent 
studies have shown that BMPs have broader functions be-
yond bone formation,3 with BMP6 and BMP2 playing promi-
nent roles in regulating hepcidin. Previous studies have 
found a strong correlation between liver BMP6 mRNA levels 
and liver iron levels,4,5 which aligns with the findings of this 
article. Notably, it has been demonstrated that iron induces 
BMP6 in liver endothelial cells by activating NRF2 in response 
to iron-induced oxidative damage and mitochondrial reactive 
oxygen species induction.3 However, it would be interesting 

to investigate this mechanism during serum iron overload, as 
iron is typically bound to proteins such as transferrin in the 
bloodstream, limiting its participation in the Fenton reaction 
and reactive oxygen species generation. Thus, the activa-
tion of NRF2 might be less pronounced or not significantly 
elevated under these conditions.

The novel contribution of this study is the identification of 
SMURF1 as a crucial regulator in activating the SMAD pathway 
during serum iron overload in hepatocytes, compared to liver 
iron overload. While previous research has established the role 
of the BMP/SMAD pathway in hepcidin regulation,5 the specific 
involvement of SMURF1 in this context has not been thor-
oughly investigated. This study demonstrated that SMURF1 
expression decreases in response to serum iron overload, 
leading to enhanced stability of SMAD1/5 and BMP receptors. 
These findings suggest that SMURF1 could be a potential ther-
apeutic target for managing iron overload disorders.

SMURF1 is an E3 ubiquitin-protein ligase that has been ex-
tensively studied for over a decade. It belongs to the NEDD4 
subfamily of homologous to the E6-AP carboxyl terminus-
type ubiquitin E3 ligases. SMURF1 and SMURF2 are involved 
in several signaling pathways, including TGF-β, BMP, EGF, 
JNK, Wnt/β-catenin, RhoA, and NF-κB signaling pathways.6,7 
The extensive roles of SMURF1 contribute to its importance 
in various diseases. Studies have found that SMURF1 plays 
critical roles in modulating cardiovascular disease, myocar-
dial fibrosis, bone metabolism and osteoporosis regulation, 
spinal cord injury, nonalcoholic fatty liver disease, type 2 dia-
betes mellitus, and even fibrotic cataract formation.7–10

The article also highlights the crucial roles of the human 
homeostatic iron regulator (HFE), TFR1, and TFR2 in sens-
ing plasma iron levels. Current understanding suggests 
that HFE binds to TFR1 under low iron conditions. However, 
when holo-transferrin levels increase, HFE is displaced from 
TFR1, allowing it to interact more with TFR2.11 Additionally, 
the involvement of SMURF1 introduces a regulatory layer 
downstream of the HFE-TFR2 interaction by modulating the 
stability of SMAD proteins, which are essential for hepcidin 
transcription. Notably, increased expression of TFR2 was ob-
served during serum iron overload compared to liver iron 
overload, correlating with elevated SMAD1 levels and re-
duced SMURF1 levels. While most studies on SMURF1 have 
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focused on its role in serum iron overload, its response to 
low serum iron remains largely unexplored. The HFE-TFR1/
TFR2 axis offers a potential regulatory mechanism for se-
rum iron levels. Furthermore, the Hemojuvelin-BMP pathway 
also influences liver hepcidin during iron deficiency. Hemo-
juvelin, a BMP coreceptor, is cleaved by the serine protease 
matriptase-2 (also known as TMPRSS6)12 during iron defi-
ciency, resulting in decreased BMP6 expression and the re-
moval of TFR2 from the cell surface.13

Another intriguing result from the article is the dramat-
ic decrease in SMURF1 levels within just 5 m following the 
introduction of holo-transferrin into the serum. The rapid 
degradation of SMURF1 over such a short period is not yet 
well understood, and there is currently no research address-
ing this phenomenon. One possible mechanism for this rapid 
degradation could involve the ubiquitin-proteasome pathway, 
where SMURF1 may be tagged with ubiquitin by E3 ubiquitin 
ligases for subsequent degradation by the proteasome. No-
tably, a study has shown that REGγ, an activator of the 20S 
proteasome, interacts with SMURF1 and mediates its degra-
dation.14 Further investigation into the specific mechanism by 
which holo-transferrin induces SMURF1 degradation would 
be valuable. While targeting SMURF1 could offer therapeutic 
benefits, it is crucial to consider the potential risks of off-tar-
get effects. Given SMURF1’s involvement in multiple signaling 
pathways, manipulating its activity could lead to unintended 
consequences. On one hand, targeting SMURF1 could provide 
a novel approach to control hepcidin expression, offering a 
promising strategy for treating disorders such as hereditary 
hemochromatosis. On the other hand, because SMURF1 reg-
ulates several critical signaling pathways (TGF-β, BMP, WNT, 
NF-κB, etc.), its inhibition or overactivation might disrupt 
normal cellular functions, leading to adverse effects. Intri-
cate tuning of SMURF1 is essential to optimize the pharma-
cological potential of its downstream regulatory proteins. For 
instance, SMURF1 modulates the activity of innate immune 
mechanisms related to pathogen recognition and elimination, 
so inhibiting SMURF1 activity might stimulate inflammatory 
immune responses. Conversely, in the case of inflammatory 
and autoimmune diseases, stimulating intracellular synthesis 
of SMURF1 could potentially be a viable treatment.15 Utilizing 
SMURF1 as a potential therapeutic target still requires further 
investigation. A potential option is to use nanoparticles and 
liposomes functionalized with ligands that bind to receptors 
uniquely expressed on the target tissue, ensuring localized 
delivery and mitigating the risks of off-target effects. For ex-
ample, a recent study indicated that using anisamide ligand-
tethered lipidoid (AA-T3A-C12), Distearoylphosphatidylcho-
line, C-14 polyethylene glycol, and cholesterol with siRNA at a 
10:1 ratio via microfluidic mixing showed successful delivery 
to several types of liver cells, including hepatocytes, liver si-
nusoidal endothelial cells, and Kupffer cells.16

In conclusion, this article provides valuable insights into 
the molecular mechanisms regulating iron homeostasis by 
identifying SMURF1 as a pivotal regulator of the BMP/SMAD 
pathway during serum iron overload, marking it as a po-
tential target for iron overload disorders such as hereditary 
hemochromatosis. However, the extensive role of SMURF1 
in various signaling pathways necessitates careful considera-
tion of potential off-target effects. Future research could fo-
cus on further exploring the specific mechanisms regulating 
SMURF1 during serum iron overload and iron deficiency, and 
refining targeted delivery methods, such as nanoparticle and 
liposome-based approaches, to optimize the pharmacological 
potential of SMURF1 modulation while minimizing unintend-
ed consequences. This study not only advances our under-

standing of iron metabolism but also opens new avenues for 
innovative treatments of iron-related diseases.
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